Connell An Analysis of NEWDES: A Modified Version of DES

AN ANALYSIS OF NEWDES:
A MODIFIED VERSION OF DES

Charles Connell

ADDRESS: 79 Locust Street, Burlington MA 01803 USA and Computer Science Department,
Boston University, 111 Cummington St., Boston MA 02215 USA.

ABSTRACT: This paper examines an encryption algorithm designed by Robert Scott[3] that
is a modified form of the Data Encryption Standard. Scott’s goal in varying DES is to
improve two aspects of it that are alleged to be weaknesses: the length of the key, and
the “secretness” of the design of the S-boxes. An ancillary goal of his is to provide an
algorithm that is easy to implement in software on a microcomputer.

Scott’s algorithm is indeed simple to implement. One of the main reasons for this is that
it uses only operations on entire bytes, so there is no individual bit manipulation. Also,
as promised, the design of the entire f-function is open for examination. The increase in
key length, however, may not be as significant as it first appears to be.

KEYWORDS: Cryptography, cryptanalysis, Data Encryption Standard, DES, key length.

A. INTRODUCTION

The Data Encryption Standard is a widely used encoding/decoding algorithm
that has received a great deal of analysis. While the algorithm is believed to be
sufficiently secure for many applications, some aspects of it keep DES from being
more strongly trusted. The two main criticisms of it have been the length of the
key and the design of its internal S-boxes.[1, pp. 97-98]

The objection to the key length is simply that the key is too short (56 bits).
A number of researchers have pointed out that someone can build a machine to
break DES by exhaustive search. The machine would try every key on a known
plaintext/ciphertext pair and discover the key in approximately one day. The
objection to the S-boxes is twofold. First, they may contain a trap door. A
trap door would allow a cryptanalyst to discover information about the key by
examining pairs of plaintext and ciphertext. Second, the design of the S-boxes is
classified, so independent researchers cannot verify that no such trap door exists.

Scott’s algorithm, NEWDES, is a variation of DES that attempts to improve
these two weaknesses.[3]

217

CRYPTOLOGIA July 1990 Volume XIV Number 3

B. THE NEWDES ALGORITHM

B.1. Encryption

NEWDES is based on the overall structure of DES. NEWDES operates on 64-bit
message blocks and produces 64-bit cipher blocks. It uses a series of encryption
rounds that progressively mix the message with the key, and distribute input
bits throughout the output.

NEWDES varies from DES in several ways, though. It is considerably simpler
than DES. It does not use initial and final permutations. All operations are on
entire bytes — at no time does the algorithm read any particular bits. The central
f-function is much, much simpler than in DES. The key in NEWDES is longer
than in DES: 120 bits or 15 bytes. The key is also used just as it is entered,;
there is no series of internal keys that must be generated.

It is important to note however, that despite these major differences, the over-
all structure of NEWDES is the same as that of DES. The core of the NEWDES
algorithm is shown in Figure 1. The algorithm contains the familiar exclusive-
or of key segments with data segments, and an f-function that operates on the
results of these exclusive-ors. All data items in the figure are bytes. The 15 key
bytes are used in order, then repeated until each has been used four times.

Notice that one line of the algorithm is different from the others. It takes two
data bytes as input to the f-function, rather than a data byte and a key byte.
The purpose of this line is to break a symmetry that results from all data bytes
being the same as each other and all key bytes being the same as each other.

B.2. Design of the f-Function

What about the f-function? In NEWDES, the f-function is simply a fixed,
pseudo-random permutation of bytes to bytes. The input is a number between
0 and 255 and the output is another, probably different, number in the same
range. No two distinct inputs produce the same output. So, the f-function is
just a table with 256 entries.

The particular method used to generate the f-function’s permutation table is
not important. As long as it is open for public examination, it is not likely to
contain a trap door known only to the algorithm’s designer. Scott chose to use
a long series of swapping operations, driven by the text of the Declaration of
Independence, to mix up the numbers between 0 and 255. While Scott’s method
appears acceptable, NEWDES works equally well with any pseudo-random per-
mutation table.

218

Connell

An

| iz:=1;
i WHILE (i=1) DO
| BEGIN
block[5] := block[5] XOR f(block[1] XOR
| i=1i+1;
i block[6] := block[6] XOR f£(block[2] XOR
| i:=1i+1;
| block[7] := block[7] XOR f(block[3] XOR
| 1=+ 1;
‘ block[8] := block[8] XOR f(block[4] XOR
; i=1i+ 1
| IF i >= 60 THEN GOTO 10;
j block[2] := block[2] XOR f(block[5] XOR
i=i+ 1
block[3] := block[3] XOR f(block[6] XOR
block[4] := block[4] XOR f(block[7] XOR
im=1i+1;
block[1] := block[1] XOR f(block[8] XOR

END;
10: ;

im=1i+1;

Analysis of NEWDES: A Modified Version of DES

key_sched[il);
key_sched[il);
key_sched[i]);

key_sched[il);

key_sched[il]);

block[5]);
key_sched[i]);

key_sched[i]);

Figure 1. NEWDES Encryption /decryption algorithm.

00
22
140

00
32

85 143 2

00
34
200

00
34

10 11 12 13 14 15

9
14 232 127 173

0
8

N o

0
78910 11 12 13 14 15
46 193 80 168 174 175

0
7
17

9 10 11 12 13 14 15

0100
5678
211 1 208 38 203 248

1

9 10 11 12 13 14 15

0100
5678
2 157 41 150 72 184

5

Figure 2. Example of bit distribution in NEWDES.

219

CRYPTOLOGIA July 1990 Volume XIV Number 3

B.3. Decryption

NEWDES decrypts a ciphertext in the same way that DES does. The algorithm
is re-applied, with a reversed key schedule. Only one slight twist is required
during decryption. The keys cannot be re-applied in strictly backwards order,
or they would be used to decrypt different parts of the ciphertext than they
encrypted. Note that byte 8 of the text is the last one touched during encryption,
but the fourth during decryption. The decryption key schedule handles this by
matching key bytes to the cipher bytes they actually encrypted.

C. Using NEWDES

As promised, it is easy to program NEWDES on a microcomputer. One im-
plementation, NEWDES.PAS, was written in Turbo-Pascal. It took only a few
hours to write, and occupies approximately 2000 bytes. Despite this small size,
much of the space is consumed by redundant code and data that were added for
program clarity. On a standard (8088-based) IBM-PC, NEWDES.PAS encrypts
or decrypts 100 64-bit blocks of data in approximately 2 seconds (author’s test).
(For information about obtaining NEWDES.PAS, see the note at the end of this
article.)

NEWDES also exhibits excellent bit distribution. A change of just one bit
in either the data or the key can change an arbitrary number of bits in the
output. The bit distribution occurs quite early in the algorithm, so that any bit
in the input can affect any bit in the output a number of times. Figure 2 shows
sets of inputs to NEWDES that vary by one bit from the previous input, and
their resulting outputs. The first line of each set is the data to be encrypted,
the second line is the key, and the third line is the encryption. In addition to
this empirical evidence, Scott presents an impressive amount of analysis of bit
distribution in his paper.

As a corollary to good bit distribution, there does not appear to be any way
that a cryptanalyst can know that he is close to finding the key. Given a known
plaintext attack, an analyst could test a key that is wrong by only one bit, but
receive output that bears no resemblance to the known ciphertext.

D. KEY SECURITY

D.1. Brute-Force Attacks

One of the goals of NEWDES is to improve on the key security of DES.
NEWDES is obviously secure against a brute-force attempt to test all possible

220

Connell An Analysis of NEWDES: A Modified Version of DES

keys on a known plaintext/ciphertext pair. There are 2'2° keys.

As is the case with DES, however, the actual number of keys to test in a
chosen plaintext attack can be reduced by one-half. This is because both DES
and NEWDES share the property that if C' = Ex(M), then C' = En(M'). (M’
is the bit-by-bit complement of M, etc.) While this property of DES is well
known, the fact that it is also true of NEWDES is not noted in Scott’s paper.
To exploit this property, a chosen plaintext can be constructed consisting of two
64-bit message blocks, M and M’. These are enciphered with the unknown key
(K), giving Cy and C,.

To find K, all keys that are not complements of each other are used to encipher
M. A key that enciphers M into C, is K. A key that enciphers M into Cj, is
K'.[2, pp. 116-118] NEWDES is obviously still secure against this type of attack,
however, since one-half of 2120 js 2119,

Potentially, there exists a much more serious weakness to the keys used in
NEWDES, which also is not noted in Scott’s paper. The problem is that there
may be too many keys.

D.2. Secondary Keys

During encryption, each 64-bit message block is enciphered into a 64-bit cipher-
text. A given message block, therefore, may be encrypted into 2%¢ different
ciphertexts. There are, however, 21?0 different keys. Each key cannot uniquely
map a given plaintext block to a different ciphertext. There are vastly more keys
than possible mappings.

How many keys will map a given 64-bit message block to the same ciphertext?
Each key must map the plaintext to some ciphertext. There are 212 keys and
2% possible ciphertexts. So, on average, 2% = 2120/2%4 keys will all map a given
64-bit message block to the same ciphertext. As we will see, it might be possible
to exploit this fact to reduce the security of NEWDES.

We refer to the key that the user chooses as the primary key; and to other
keys that produce the same result, but were not chosen by the user, as secondary
keys. Note that secondary keys work during decipherment; any key that maps a
plaintext to a ciphertext will decrypt that ciphertext as well.

We now pose two questions:

1. Consider a 64-bit message (M), a primary key (K;), and the encipher-
ment of M; using K; (C;). Assume that K, is a secondary key for this
plaintext/ciphertext pair. That is, K, also deciphers C; into M.

Now consider a distinct 64-bit message (M) enciphered using the same
primary key (K). Call the result of this encipherment Cs.

221

—

CRYPTOLOGIA July 1990 Volume XIV Number 3

Is K, also a secondary key for M, and C5?

2. Consider a 64-bit message (M;), a primary key (K1), and the encipher-
ment of M, using K; (C1). Is there an efficient method of generating
secondary keys that also map M; to Cy?

If the answer to question (1) is “Yes”, then a secondary key for one 64-bit
message block is, in fact, a key for all blocks that use the same primary key. This
means that every multi-block message encoded with NEWDES has, on average,
256 correct keys. In this case, NEWDES has an effective key length of 2%¢: the
number of distinct ciphertexts that one message block can map to.

If the answer to question (1) is “No”, but the answer to question (2) is “Yes”,
we may still be able to compromise the key length. Assume a cryptanalyst has
a multi-block plaintext/ciphertext pair. The analyst could find a key (K) that
works for one 64-bit message block (M). This might be the primary key for the
entire message, or it might be a secondary key that only works for M. Assume the
latter, which is more likely. The cryptanalyst could then exhaustively generate
secondary keys from K and try these on other blocks of the message. One of the
secondary keys derived from K is the primary key and will decrypt the entire
message.

It might be possible to do this in a way that would require a maximum of
264 4 256 tests. 264 tests might be able to find one secondary key for one message
block, and 256 variations of this key could find the primary key for all blocks.
This would result in a total number of tests that is less than 255,

E. CONCLUSION

We have seen that NEWDES is a simple, elegant algorithm. It is straightforward
to program in a high-level language, and it yields programs that run quickly. Its
design is completely public and open for inspection. NEWDES gives excellent
bit distribution for plaintexts and keys.

The effective key length of NEWDES may be less than what the user enters,
however. Each message block has secondary keys that work as well as the key
that the user chose. These secondary keys may compromise the effective key
length for multi-block messages also, reducing it significantly below 120 bits.

REFERENCES

1. Denning, Dorothy E. R. 1983. Cryptography and Data Security. Reading
MA: Addison-Wesley Publishing Company.

222

Connell An Analysis of NEWDES: A Modified Version of DES

2. Meyer, Carl H. and Stephen M. Matyas. 1982. Cryptography: A New
Dimension in Data Security. New York: John Wiley and Sons.

3. Scott, Robert. 1985. Wide Open Encryption Design Offers Flexible Im-
plementations. Cryptologia. 9(1): 75-90.

ACKNOWLEDGEMENTS

I am grateful to Steven Homer for an excellent course on cryptology and for
valuable suggestions about this paper; to Robert Scott for a helpful discussion of
his original work and for his review of this paper; and to the anonymous reviewer
for his or her careful reading of this paper and comments about it. Any errors
in this article, of course, remain mine.

SOFTWARE

To obtain a copy of NEWDES.PAS (the author’s Turbo-Pascal implementation
of this algorithm) please send the author the following: 1) a 5 1/4 inch diskette
formatted for a standard IBM-PC (double-sided, double-density, 360K); 2) a
stamped, self-addressed diskette mailer.

BIOGRAPHICAL SKETCH

Charles Connell earned a BA in linguistics from Hampshire College in 1979 and
an MA in computer science from Boston University in 1984. He is currently in the
PhD program in computer science at Boston University. His research interests
include approximation algorithms for hard problems and software engineering
for safety-critical systems. Mr. Connell also works as an independent consultant
in the Boston area.

223

