
Connell 1/26/2012 12:58 PM Page 1

Why Bad Things Happen to

Big Software Projects

(And How to Prevent Them from Happening to Yours)

Chuck Connell, BeautifulSoftware.com

There are many troubled software projects in the world right now. There always are. If you ask

the programmers and line managers for one of these projects why things are going wrong, they

will probably say something like…

 We don’t have enough time and money.

 Upper management is trying to squeeze a year of work into every quarter, and they are

making each of us do the work of two people.

 If we just had a more realistic schedule and more help, we could get this thing done.

It certainly is true that some software projects fail because of too little time and money. Startup

companies often face the challenge of finishing a commercial-grade program with limited

resources.

But lack of time and money is not the reason for the colossal software failures that make

headlines. The reason for truly expensive failures is actually the opposite. Big software projects

usually go off track because they have too large a budget, too many people working on them and

are too important.

Examples of this kind of error are well known.

 The U.S. Federal Aviation Administration’s re-engineering of its air traffic control

system, a project known as Advanced Automation System (AAS), cancelled after $6

billion spent.

 The Denver airport’s automated baggage handling system, cancelled after $500 million in

outlays and delay cost.

http://www.beautifulsoftware.com/

Connell 1/26/2012 12:58 PM Page 2

 The infamous U.S. FBI Virtual Case File system, designed to “connect the dots” among

disparate pieces of intelligence, cancelled after $170 million spent.

 The U.K. National Health Service’s automation of its patient medical records, via the

Lorenzo software, is in deep trouble as of this writing and will likely be scrapped after

$24 billion spent.

The failure of these projects flowed directly from the following assumptions (explicit or implicit)

at their outset.

1. This project is really important. Management will never cancel it.

2. This project will have such a huge benefit when finished that it is OK to blow past our

original budget and ask for more time, money and people. We will get them. If we skate

past the new targets, we can ask for more again, and we will get it. And again.

3. Key aspects of what we are trying to do are so novel that we have to invent new methods

for doing them. We are not just writing a big program; we are breaking new ground.

4. The software we are going to write will be very complicated. But that’s OK; the problem

itself is complicated.

These projects were unsuccessful because they tried to do too much, tried to invent too much

from scratch, wrote too many lines of code and had a vision that was too grand. While humans

are smart in some ways, no person can grasp all the interactions in such highly complex systems,

leading to almost inevitable failure. These broken software projects were not built carefully out

of known, working components. Instead, their designers attempted to spring them into existence

from whole cloth.

Combining a sense of entitlement, a lack of limits, a never-before-solved problem and

acceptance of complexity is a recipe for disaster. These projects were designed for failure, and

then participants were shocked to discover how badly (and expensively) software can go wrong.

It was actually fairly easy to predict on Day 1 that the projects would go belly up.

So what is the solution? Never do a big project? Almost. The answer is not to do them in the

same way. The right approach for very large software projects is to adopt a change in mindset

and a change in architecture.

Connell 1/26/2012 12:58 PM Page 3

New Mindset

Every project has a budget that is not worth exceeding. No project is so important it is worth any

cost.

To take one example, streamlining U.S. Internal Revenue Service operations would certainly

have a payoff. The IRS now spends about $12 billion per year to collect about $2.3 trillion in

taxes. If a better computer system allowed for just an additional 2% in collections, say through

reduced fraud, this would amount to an extra $46 billion income per year. So it would surely be

worth a billion dollars to buy/build such a new computer system for the IRS. It would even be

worth $40 billion dollars, since the payback period would be just one year. But would it be worth

$500 billion dollars? No, since the payback period would be more than 10 years and by then the

system requirements and available technology likely would change.

No project participant, at any level, should ever think that he/she is immune from limits or

failure. Coming to work every day in a state of high fear is not good for productivity. But coming

to work each day with the belief that efficiency and productivity do not matter is inviting a

bloated project, as all of the above examples were.

The proof that every project has time/budget/resource limits is the fact that the first three projects

cited above were ultimately cancelled, despite their importance, with the UK health records

effort close behind. (IRS modernization keeps floundering also, but has been restarted several

times with different players.)

New Architecture

A complex monolithic project, which must all come together in order to work, is a blueprint for

problems.

Instead, break apart large projects so they are in smaller, more manageable pieces. The overall

architecture should specify separable components that can succeed on their own or in

combinations with their peers, performing useful operations before the whole project is

complete.

Note that I am not repeating the tried-and-true advice to break a program into modules or classes;

any good design does that. The new architecture advocated here divides a large software system

into separate components such that each, on their own, performs useful work. When the

components are combined with other working components, even more useful work is performed.

The overall vision is a set of working parts, which do not all need to be completed in order for

the system to be useful. The system is survivable without all of its pieces.

Of course, in these systems, the modest-size pieces may still be considerable software projects,

but their size and complexity is limited to a realm where they have a reasonably high probability

Connell 1/26/2012 12:58 PM Page 4

of operating correctly in a predictable amount of time. Since the overall system is designed to be

useful with various combinations of components, the lack of one part is not a show stopper.

There is no single point of failure or monolithic “all or nothing” nature to the solution.

**

Many of the world’s giant software projects have been disasters waiting to happen, right from the

start. Instead, participants on large software projects should adopt two new credos:

1. We need to work smart or we could lose this project.

2. Let’s make modest-size useful pieces that can be combined in useful ways.

This is a recipe for success.

Chuck Connell knows software projects from all sides. He has been a hands-on programmer, a

software product architect, a manager of programmers, a university teacher of software

engineering and a consultant. His consulting practice BeautifulSoftware.com helps

organizations assess the health of software projects, manage ongoing projects and turn around

troubled projects.

For more information….

http://spectrum.ieee.org/computing/software/why-software-fails (article about software failures)

http://calleam.com/WTPF/?page_id=3 (ongoing list of software failures)

http://www.oig.dot.gov/sites/dot/files/pdfdocs/av1998113.pdf (report about FAA AAS)

http://www.beautifulsoftware.com/
http://spectrum.ieee.org/computing/software/why-software-fails
http://calleam.com/WTPF/?page_id=3
http://www.oig.dot.gov/sites/dot/files/pdfdocs/av1998113.pdf

